Sicheng Liu bio photo

Email

LinkedIn

Github

Week 1 - Elements of Machine Learning Algorithms

Definition

The Mathematically Definition of Machine Learning:

$A:S \in (X \times Y)^n \mapsto h_s \in H$

Input training data: $S = {(X_1,Y_1),…,(X_n,Y_n)}$

Input predefined hypothesis class: $H={h_1,h_2}$

The objective function and optimization method together make up a mapping: $A:(x \times y)^n \mapsto H$

Output hypothesis: $h_s$

The overall learning algorithm is mapping: $A:S \in (X \times Y)^n \mapsto h_s \in H$

Input data

Noise in data:

  • Feature Noise
  • Label Noise

Input Predefined Hypothesis Class

How to choose the hypothesis class?

  • Data analysis
  • Complexity
  • Cross-Validation
  • Prior knowledge

Objective Function